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Abstract— Learning often involves adapting behavior in re-
sponse to the inferred causes of success and failure. At the
neural level, this can be the result of repeating activity patterns
of neurons that lead to favorable outcomes. However, it is not
clear how the contributions of individual cells to an ongoing
behavior is assessed. Using a calcium imaging based closed loop
Brain-Machine Interface (CaBMI), we trained mice to perform
a neuroprosthetic task using the coordinated activity of a small
ensemble of neurons in layer 2/3 of sensorimotor cortex. We
find that that after an initial period of exploration, neurons that
do not directly drive the effector decrease in variance and event
frequency over the course of learning. However, a large fraction
of these ‘indirect’ cells demonstrate robust spatiotemporal
dynamics both before and after an animal achieves reward.
Throughout a single 30 minute session, these spatiotemporal
sequences increase in frequency and become more consistent.
Our findings suggest that neuroprosthetic control is the result of
an emergent, spatially organized network level solution, rather
than the direct modulation of a few chosen output neurons.

I. INTRODUCTION

Several studies of learning have shown that spatiotem-
poral activity patterns of neurons which lead to desired
behavioral outcomes are selected and consolidated [1]–[3].
The theoretical framework that describes this underlying
computational problem is called ‘credit assignment’, and
it is an important ingredient of reinforcement learning [4].
However, the single neuron rules that result in behavior
modification or maintenance have been difficult to address,
due to the immense fine-scale complexity of biological neural
networks, the heterogeneity of natural behavior, and the
lack of a causal relationship between an observed neuron’s
activity and behavior.

To overcome these obstacles, we employ a reductionist
approach where behavioral output is simply the optically
recorded activity of a small ensemble of experimenter defined
cortical neurons expressing genetically encoded fluorescent
calcium indicators. This neuroprosthetic strategy uses closed-
loop auditory feedback to guide a ‘fictive behavior’ where
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animals are rewarded when a specific network pattern is
observed in a chosen neural population [5], [6]. Simi-
lar to natural motor tasks, previous work has shown that
neuroprosthetic task performance tends to increases over
days [5]. Surprisingly, BMI performance can increase even
when the output cell identity is changed from day to day-
suggesting that animals are learning to better assign reward
credit to output neurons, rather than consolidating specific
activity control patterns [7]–[9]. It is unclear how the local
population of cells resolves the identity of the output cells
on these short timescales. The remaining units that are not
assigned a direct relationship with effector, called ‘indirect
neurons’, have been shown to demonstrate tuning relative
to BMI tasks, suggesting that some of these neurons may
become incorporated into functional neuronal assemblies
with ‘direct neurons’ [10], [11]. However, limited cell yields
from chronic electrophysiology and an experimenter bias to
assign the highest signal-to-noise units as output cells has
provided limited opportunities to ask questions about the
relative contributions of local networks [11].

We find that after an initial period of exploration, the local
cortical neural population that does not directly drive effector
output converges to form reproducible, spatiotemporally or-
ganized sequences of activity that increase in frequency and
consistency throughout a 30 minute session [5], [10]. Taken
together, our results suggest that neuroprosthetic control is
achieved by increasing the frequency of a limited number
of spatiotemporal network patterns, rather than the isolated
modulation of individual cells.

II. METHODS

A. Animals and Surgical Procedure.

All animal procedures were performed in accor-
dance with U.C. Berkeley IACUC regulations. Stereotac-
tic surgery was performed in (n=5) Emx1IREScre or
wild type mice as previously described [5]. 200-300nl
of AAV2.9 CamKII.GCamp6f.WPRE.SV40 or AAV5-SYN-
FLEX-GCaMP6f-WPRE-SV40 was used to preferentially
label excitatory cells in cortex. Mice were given 4 weeks
post-surgical recovery time to allow for sufficient protein
expression.

B. Experimental Preparation

In vivo imaging was performed at 30Hz using a com-
mercial multi-photon microscope (Bruker, Ultima Investi-
gator) driven by a mode-locked, tunable Ti:Sapphire laser
(CHAMELEON ULTRA II) and set to 900-980 nm, steered
via 8kHz resonant galvos through a 20x water immersion



Fig. 1. Experimental paradigm for a closed-loop calcium imaging based
auditory feedback. (A) Head-fixed mice run freely on a spherical treadmill,
and perform BMI experiments for a water reward. (B) Mice must modulate
calcium dynamics in neuronal ensembles to move a cursor to a high-pitched
target tone that was associated with reward. (C) Two ensembles ( eg, E1
in green; E2 in red) of 2 single cells each were chosen for inclusion in the
‘direct’ output population. We were able to observe hundreds of additional
‘indirect’ neurons in the same field of view, their ∆F/F0 over time is
schematized in blue. (D) Mice were able to modulate the calcium dynamics
in these neuronal ensembles to move a cursor 2.5SD above baseline levels.
Additional reward was prevented until the cursor returned to within baseline
levels ( 1SD of the mean). Top and bottom dashed lines indicate reward
and reset threshold respectively. Red stars indicate reward achievement (E)
Output neuron activity converges to form reproducible activity patterns to
achieve a reward. Shown here is the average E1 and E2 population centered
at the hit for one representative animal. Shading represents 2xsem.

objective (XLUMPLFLN 20XW). Photons were collected
with a GaAsP photomultiplier tube (Hamamatsu Model
H10770). Mice were put on a restricted water regiment for
the duration of the experiment [12]. During the task, mice
were head-fixed but allowed to run freely on a circular
treadmill, consisting of styrofoam ball suspended by air
(PhenoSys, JetBall Virtual Reality System). Non-rigid image
registration, ROI extraction, baseline de-trending, and spike
deconvolution was performed offline. [13], [14]

C. Behavioral Task

The boundaries of two ensembles of two well isolated
regions of interest (ROIs) were manually defined after a 5-15
minute baseline period of imaging. Depending on the density
of viral labeling, we were able to observe 300-800 additional
neurons in a 500µm2 field of view. Ensemble activity
was measured as the summed, running z-score normalized

∆F/F0 for each component neuron. This normalization is
performed to scale each neuron by its dynamic range, in
order to overcome potential differences in viral expression
across cells, such that each direct unit would contribute
equally to the effector. The cursor was smoothed with a
running average of 2 - 3 frames. Closed-loop latency was
38ms, with a jitter of 17ms ( 95% confidence). Frequencies
used for auditory feedback ranged from 1-20 kHz in quarter-
octave increments to match rodent psychophysical discrimi-
nation thresholds [5]. Mice must modulate calcium dynamics
in these neuronal ensembles to move the cursor to a high-
pitched target tone that was associated with water reward, set
at 2.5 standard deviations (SD) above the baseline (Fig 1b).
Additional reward was prevented until the cursor returned to
within baseline levels ( 1SD of the cursor mean).

D. L2-regularized Linear Regression Model

Indirect neuron features were derived from the spike de-
convolved calcium activity within a 2 second sliding window
[timepoints * spike and height features]. The response matrix
consisted of the fluorescent change (∆F/F0 ) of each direct
neuron (E1a, E1b, E2a, E2b), the cursor (E1 − E2), and
the 2 ensembles E1 and E2. We separated the indirect
neuron feature matrix (IND) and direct neuron response
matrix (DN ) into a training dataset and completely withheld
validation dataset based at the moment of the ‘hit’. To avoid
bias, we fixed the regularization coefficient- determined by
cross-validating the regression procedure 5×. In each cross-
validation iteration, 80% of the training dataset was used
to estimate the model weights for each of 10 possible
regularization coefficients of the remaining 20%. After the
completion of cross-validation, a regularization-performance
curve was obtained by averaging the cross-validation sample
R2 first across 10 regularization coefficients samples and
then across all 7 direct neuron responses, then the best
regularization parameter (21.544) was selected. Model esti-
mated weights were used to predict responses of the withheld
validation dataset. We repeated the modeling procedure using
the features of indirect neurons to predict shuffled direct
neurons’ response matrix in time (frames) axis. We shuffled
the response matrix 1000× to build a null distribution of R2

to obtain P values [15].

III. RESULTS

A. An Emergent Network Solution to Neuroprosthetic Tasks

Mice were able to modulate the calcium dynamics in
chosen neuronal ensembles to move the cursor to a high-
pitched target tone that was associated with water reward
(Fig 1c) [5]. The task is designed to control for simplistic
network level solutions by forcing two ensembles to be active
differentially (i.e. E1−E2). However, an increase in reward
frequency over a session could result from non-specific, or
a multitude of degenerate network strategies- For example,
upon hearing a tone, increased attention or arousal may
increase excitability in individual cells, increasing network
entropy compared to a baseline period when cells were less
active. This feedback loop could increase the probability that



any network patten would occur, compared to the baseline
period. [10]. If this was true, both the variance across the
network and the average number of events across individual
cells in the interval immediately before the reward criteria
is met should remain constant or increase over the course
of the session, reflecting a strategy of using numerous
state permutations to gain reward. However, we observe the
opposite- total variance across the network tends to decrease
over time, as does the mean population activity of indirect
neurons in the moments leading up to the hit (Fig 2c-d). In
contrast, the difference between the two ensembles that result
in reward (i.e. E1 − E2) increases in magnitude over the
course of a session on the same time interval (Fig 2a). Given
these results, we next normalized the number of rewards
over the session as a function of the number of rewards that
would have been achieved if any other pairs of neurons had
been driving the cursor. We find there is a strong trend to
increase reward related network patterns over time, indicating
that a limited number of specific activity patterns are being
consolidated on this timescale (Fig 2f). Moreover, we find
that the indirect neurons exhibit low dimensional structure
that lead and follow rewarded patterns in direct neurons (Fig
2g), and this structure dramatically increases in consistency
over the course of a session(Fig 2h-i).

B. Prediction of Output Cells Using Indirect Neuron Activity

Increase of the relative reward rate over time suggests
that the network is learning to specifically modulate a
subset of neurons to increase the reward rate (Fig 2g-i). We
reasoned that it may be possible to observe network credit
assignment by modeling how well the population is able to
decode output neuron activity. Using L2-regularized linear
regression (also known as ridge regression), we find that
direct neurons ∆F/F0 can be accurately decoded from the
indirect population activity with high accuracy (R2 values
for E1a = 0.77, E1b = 0.78, E2a = 0.71, E2b = 0.53) in
addition to the ensemble activity ( R2 E1 = 0.65, E2 = 0.69).
However, we find that our ability to decode direct neurons
is not significantly different than the ability to decode any
arbitrary neuron, or linear combination of neurons. In all
cases, we find that a subset of neurons (10-20%) can decode
the majority of the variance in the any given cells. However,
the value of the cursor (simply E1 − E2) was significantly
more difficult to decode compared to linear combinations
of other neurons (cursor R2 = 0.36), strongly suggesting
that the network is not passively reflecting incoming sensory
information. Interestingly, our ability to decode the cursor
increases when considering the tone that will occur in the
future (R2 = 0.7 given t + 400ms), while over the same
timeframe there is a decrease in decoding accuracy for other
cells.

C. Spatiotemporal Distribution of Indirect Cells

Motor and premotor structures have been shown to be
locally clustered when driving natural movement, which may
result from intrinsic connectivity patterns [16], [17]. To test
if this is true in our neuroprosthetic task, for every successful

Fig. 2. Unrewarded neural population activity patterns sparsen over
time. (A) variance across the population of indirect neurons within one
second preceding the hit drops significantly across the session for one
example animal ( p<0.01), (B) as does the mean normalized ∆F/F0 of
the population across the this same interval ( p<0.01). Each blue marker is
a sample taken at the ‘hit’ Unrewarded Neural population activity patterns
sparsen over time. (C−D) This is generally true for all animals recorded (
n = 15 sessions ) (E) Relative ∆F/F0 of the output neurons, significantly
increases throughout the course of the session ( p<0.01). (F ) Compared to
the simulated rate of reward using random pairs of indirect neurons, there is
a strong trend to increase reward related network patterns over time. Each
blue line represents one animals across a single day of BMI training. The red
region indicates the distribution of reward rates for all animals that would
have been achieved if any other pairs of neurons had been driving the cursor
( shading is 2× sem). (G − I) Indirect neurons exhibit low dimensional
structure that is consistent from hit to hit. (G) The top 6 PCs from 700
indirect neurons from one animal across a single day of BMI learning show
population fluctuations before and after reward ( color indicates Principal
Component. Shading represents 2xsem.). (H) Network increases slightly
in dimensionality across learning (n = 15 sessions) (I) The consistency of
the top 3 PCs increases dramatically over a session. (n = 15 sessions)

ensemble pattern that led to a reward, (ie. E1 − E2 >
2.5SD), we take the activity 1.5s before and 1.5s after
this moment, and observe how many cells have consistent
changes in fluorescence. We can compare the mean ∆F/F0

activity across a subset of ’hits’ ( when direct neuron activity
results in reward ) for each indirect cell, and compared it to
the mean ROI activity of an independent subset. ( eg, even
vs. odd hits). We find that roughly 10-20% of the population
consistently forms a temporal relationship with the direct
neurons (Pearson correlation is > 0.9), and consistently ei-
ther leads or follows the activity of output neurons(Fig 4a,c)
[10]. This result suggests that direct neurons are incorporated
into large spatiotemporal sequences that satisfy the reward
criteria. Plotting the spatial distribution of these cells reveals
spatiotemporal clustering on the order of 100µm. (Fig 4b,d).

IV. DISCUSSION

Our findings recapitulate observations seen in across-day
learning in both neuroprosthetic, and natural motor tasks:



Fig. 3. Indirect neurons form robust spatiotemporal patterns leading up to,
and following the rewarded output neuron configuration. (A) Three seconds
of activity, centered at the reward criteria (’trials’), were split into two
interleaved groups ( 55 each, 110 total for this animal) and averaged across
trials. The mean ROI activity was sorted on the even trials, and this sorting
is applied to the odd trials . A subset of ROIs demonstrated high consistency
( right panel displays 220/790 identified ROIs that all have >0.90 Pearson
correlation of their shuffled fluorescent time course ). and this correlated
with peak amplitude ( p<.01) (B) Identified regions of interest colored by
time according to the sorting on the even trials in A. ROIs with <0.90
correlations are displayed but masked with opacity. (C − D). Same plot
as A−B, but using data from a previous day of imaging in a nearby cell
population, where different output neurons had been selected (displaying
120/511 ROIs, sorted on the even trials from this day). (E) Neurons cluster
in space and time with a length scale of 100µm, relative to the rewarded
network pattern in direct neurons. (F ) E1 cells are more highly tuned to
the local population at the moment the reward criteria is achieved.

behavioral performance correlates with an increased consis-
tency of neural responses [8]. We observe an initial increase,
then rapid decrease of unrewarded neural activity patterns in
neural populations that do not control an external effector.
This result highlights a classic prediction from reinforcement
learning theory: early in a session, there is high variance
while the network explores various network patterns- those
that lead to reward are consolidated and then exploited, and
unrelated activity becomes sparse. In addition, we observe
that the surrounding network can converge in space and time
to produce sequences in cells that spatially cluster on the
length-scale of 100µm. In this case, the coordinated activity
of many neurons acts as the emergent functional unit of
neuroprosthetic learning [18]. Possibly, this is the result of
re-assigning pre-existing sequences that normally form motor

primitives [19].
Interestingly, while the activity any arbitrary cell (or any

linear combination, i.e. ensemble activity) can be decoded
by the remaining population with high accuracy ( mean R2 =
0.70), prediction performance of the cursor is relatively poor
(R2 = 0.36). However, performance dramatically increases
when considering the cursor value in the near future (R2 =
0.66 given t+400ms). This surprising result suggests that the
network is not passively responding to a reward expectation
based on ongoing sensory feedback, a point further supported
by the observation that neurons display minimal modulation
with passive tone playback [20]. Instead, this observation
suggests that the local neural population contains both in-
formation about the current network state, along with an
estimation of the upcoming sensory consequences resulting
from that network state- a critical prediction of reward guided
behavior.
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