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Hidden neural states underlie canary song 
syntax

Yarden Cohen1 ✉, Jun Shen2, Dawit Semu1, Daniel P. Leman1, William A. Liberti III1,3,  
L. Nathan Perkins1, Derek C. Liberti4,5,6, Darrell N. Kotton4,5,6 & Timothy J. Gardner1,7 ✉

Coordinated skills such as speech or dance involve sequences of actions that follow 
syntactic rules in which transitions between elements depend on the identities and 
order of past actions. Canary songs consist of repeated syllables called phrases, and 
the ordering of these phrases follows long-range rules1 in which the choice of what to 
sing depends on the song structure many seconds prior. The neural substrates that 
support these long-range correlations are unknown. Here, using miniature 
head-mounted microscopes and cell-type-specific genetic tools, we observed neural 
activity in the premotor nucleus HVC2–4 as canaries explored various phrase 
sequences in their repertoire. We identified neurons that encode past transitions, 
extending over four phrases and spanning up to four seconds and forty syllables. 
These neurons preferentially encode past actions rather than future actions, can 
reflect more than one song history, and are active mostly during the rare phrases that 
involve history-dependent transitions in song. These findings demonstrate that the 
dynamics of HVC include ‘hidden states’ that are not reflected in ongoing behaviour 
but rather carry information about prior actions. These states provide a possible 
substrate for the control of syntax transitions governed by long-range rules.

Canary songs, like many flexible behaviours, contain complex transi-
tions—points at which the next action depends on memory for choices 
made several steps in the past. Songs are composed of syllables pro-
duced in trilled repetitions known as phrases (Fig. 1a) that are about 
1 s long and are sung in sequences, typically 20–40 s long. The order 
of phrases in a song exhibits long-range syntax rules1. Specifically, 
phrase transitions following about 15% of the phrase types depend on 
the preceding sequence of 2–5 phrases. These long-range correlations 
extend over dozens of syllables, spanning time intervals of several 
seconds (Fig. 1b, c).

In premotor brain regions, neural activity that supports long-range 
complex transitions will reflect context information as redundant rep-
resentations of ongoing behaviour5–8. Such representations, referred 
to here as ‘hidden neural states’, have been predicted in models of 
memory-guided behaviour control9, but are challenging to observe 
during unconstrained motion in mammals10–17 or in songbirds with 
simple syntax rules18.

Like motor control in many vertebrate species, canary song is gov-
erned by a cortico-thalamic loop19–21 that includes the premotor nucleus 
HVC2–4. In stereotyped songs of zebra finches, HVC projection neurons 
(PNs) produce stereotyped bursts of activity that are time-locked to 
song3. These cells drive motor outputs or relay timing references to the 
basal ganglia22. In the more variable syllable sequences of Bengalese 
finches, some PNs fire in a way that depends on neighbouring syllables18, 
supporting sequence generation models that include hidden states9. 
However, the time-frame of the song-sequence neural correlations are 

relatively short (roughly 100 ms). By contrast, correlations in human 
behaviour can extend for tens of seconds and beyond, and are consist-
ent with long-range syntax rules. At present it is not known whether 
redundant premotor representations in songbirds can support work-
ing memory for syntax control over timescales longer than 100 ms.

To further dissect the mechanisms of working memory for song 
we used custom head-mounted miniature microscopes to record 
HVC PNs during song production in freely moving canaries (Seri-
nus canaria) (Fig. 2b). Although PNs can be divided into distinct 
projection-target-specific subtypes, the imaging method does not 
distinguish these populations and we report results for this mixed 
population as a whole. These experiments reveal a previously unde-
scribed pattern of neural dynamics that can support structured, 
context-dependent song transitions and validate predictions of 
long-range syntax generated by hidden neural states9,23 in a complex 
vocal learner.

Complex transitions in a subset of phrases
Inspired by technological advances in human speech recognition24, we 
developed a song segmentation and annotation algorithm that auto-
mated working with large data sets (more than 5,000 songs; Extended 
Data Fig. 1a, Methods). The birds’ repertoire included 24–37 different 
syllables with typical durations of 10–350 ms. The average number of 
syllable repeats per phrase type ranged from 1 to 38, with extreme cases 
of individual phrases exceeding 10 s and 120 syllables (Extended Data 
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Fig. 1c–g). Transitions between phrases could be completely deter-
ministic, where one phrase type always followed another, or flexible, 
where multiple phrase types could follow a given phrase (Fig. 1a, b). In 
very rare cases, transitions contained an aberrant syllable that could 
not be stably classified (Extended Data Fig. 2g–i), and all data were 
visually proofed. (Extended Data Figures 1b and 2 illustrate the reliable 
annotation of phrase sequences and syllable repertoires.)

As shown in another strain of canaries1, we found that a small subset 
of phrase types precede ‘complex’ transitions—behavioural transitions 
that depend on the multi-step context of preceding phrases. Specifi-
cally, the probability of transition outcomes can change by almost an 
order of magnitude depending on the identity of the three preced-
ing phrases (Fig. 1b). Such song context dependence is captured by a 
third-order Markov chain. Extended Data Figure 1i shows the long-range 
context-dependent transitions for two birds.

HVC neurons encode long-range syntax
To characterize the neural activity that supports complex transitions, 
we imaged neurons that expressed the genetically encoded calcium 
indicator GCaMP6f in freely behaving adult male canaries (n = 3, age 
at least one year, recording in left hemisphere HVC2). The indicator 
is selectively expressed in PNs and neural activity to be recorded via 
fluorescence dynamics extracted from annotated regions of interest 
(ROIs; Extended Data Fig. 4, Methods). In our data set, 95% of all phrases 
are trills of multiple syllables and only 6.1% of those are shorter than the 
decay time constant of the calcium indicator25 (400 ms; Extended Data 
Fig. 1h). As in finches, HVC PN activity in canaries was sparse in time3,18. 
Out of n = 2,010 daily annotated ROIs (mean ± s.d. of 35 ± 15 ROIs per 
animal per day), about 90% were selectively active in just one or two 
phrase types (Fig. 2a, c, Extended Data Fig. 5a). This, combined with 
the long phrase duration (Extended Data Fig. 1f, h), allowed us to exam-
ine the song-context dependence of neural activity using GCaMP6f. 
In our analysis, we treat recordings from different days separately. 
This approach overestimates the number of independent neurons 
we imaged but avoids analysis biases and stability concerns. Under 
the more conservative assumption that sources persist across days, 
in Supplementary Note 1 we still estimate 1,057 independent sources 
in our data set.

When we examined the patterns of phrase-locked activity, we iden-
tified signals that changed depending on song context. For exam-
ple, some ROIs showed weak or no activity in one song context but 

demonstrated strong activity in another song context (Fig. 2a). Notably, 
this context-dependent activity was strongly influenced by the iden-
tity of non-adjacent phrases. For example, Fig. 2d shows the denoised 
fluorescence signal raster from a ROI, locked to the phrase type marked 
in pink, which displays a marked variation in activity ((Δf/f0)denoised, 
Methods) depending on the second phrase in the sequence’s past—a 
second-order correlation. This sequence preference was quantified 
by integrating the ROI-averaged signal (Extended Data Fig. 5b, c; 
one-way ANOVA, F5,35 = 18.3, P < 1 × 10−8; one-way ANOVA evaluates the 
null hypothesis that there is no activity variation with phrase identity 
for all sequence-correlated ROIs in this manuscript). We found ROIs 
with signals that related to the identities of past and future non-adjacent 
phrases in all three birds (Extended Data Fig. 5). Across all birds, 21.2% of 
the daily annotated ROIs showed sequence correlations that extended 
beyond the current active syllable. In 18.1% there were first-order cor-
relations, where activity during one phrase depends on the identity 
of an adjacent phrase, and in 5.6% there were second-order or greater 
relations (Extended Data Fig. 5d).

These sequence dependencies could potentially be explained by 
other factors inherent to the song that may be more predictive of phrase 
sequence than HVC activity. For example, transition probabilities fol-
lowing a given phrase could potentially depend on the phrase dura-
tion1, on the onset and offset timing of previous phrases, and on the 
global time since the start of the song—implicating processes such 
as neuromodulator tone, temperature buildup, or slow adaptation 
to auditory feedback26–31 (Extended Data Fig. 6a–g). To rule out these 
explanations, we used multivariate linear regression and repeated the 
tests for sequence-correlated neural activity after discounting the 
effects of these duration and timing variables on the neural signals. We 
found that 32.8% (39/119 from 3 birds) of second-order or greater rela-
tions and 52.7% (147/279 from 3 birds) of first-order relations remained 
significant (Extended Data Figs. 5c, 6h).

The sequence-correlated ROIs tend to reflect past events more often 
than future events. Out of n = 398 significant correlations between neu-
ral activity and phrase sequence, 62.3% reflected preceding phrase iden-
tities (binomial z-test rejects the hypothesis of 50%, z = 6.94, P < 1 × 10−11). 
This bias was also found separately in first- or higher-order correlations 
(Fig. 2e, 60.2% and 67.2%, respectively; both percentages are signifi-
cantly larger than 50%; binomial z-test, z = 4.82, 5.31 and P < 1 × 10−6, 
P < 1 × 10−6, respectively, and oppose the bias of 44.6% and 43.1% first- 
and second-order correlations expected to reflect past events from 
behaviour statistics alone; P < 1 × 10−7, binomial tests) and persisted 

1 s

10
0 

so
ng

s

ba

1 s

3 
kH

z

c

2nd 3rd 4th 5th Total

Complex transition order

10

20
n = 5 birds

P
hr

as
es

 (%
)

Fig. 1 | Long-range syntax rules in canary song. a, Two example spectrograms 
of canary song. Coloured bars indicate different phrases assembled from  
basic elements called syllables. Both examples contain a common phrase 
transition (orange to pink) but differ in the preceding and following phrases.  
b, A summary of all phrase sequences containing this common transition 
reveals that the choice of what to sing after the pink phrase depends on the 
phrases that were produced earlier. Lines represent phrase identity and 
duration. Song sequences are stacked (vertical axis) and ordered by the 
identity of the first phrase, the identity of the last phrase, and then the duration 

of the centre phrases. Pie charts show the frequency of phrases that follow the 
pink phrase, calculated in the subset of songs that share a preceding sequence 
context (separated by dashed lines); grey represents the song end and other 
colours represent a phrase pictured in the left panel. The pink phrase precedes 
a third-order ‘complex transition’; the likelihood that a particular phrase will 
follow it is dependent on transitions three phrases in the past. c, Percentage 
(mean + s.e.m.) of phrases that precede complex transitions of different orders 
in n = 5 birds (dots).
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when we considered ROIs that overlapped in footprint and sequence 
correlation across days as the same source (Supplementary Note 1). 
Apart from being more numerous, past correlations also tend to be 
stronger than future correlations (Extended Data Fig. 6i; significantly 
larger mean fraction explained variance (η2) in past correlation, boot-
strap comparison rejects the null hypothesis of equal means, P < 1 × 10−6 
and P = 0.001 for first- and higher-order correlations, respectively).

These findings suggest that, for a subset of HVC neurons, calcium 
signals are not only related to present motor actions, but also convey 
the context of past events across multiple syllables.

HVC PNs also encode within-phrase timing
HVC PNs have been recorded in Bengalese finches and in swamp spar-
rows, two species that also sing strings of syllable repeats. In swamp 
sparrows, examples of basal ganglia-projecting HVC neurons exhib-
ited stereotyped syllable-locked firing for each syllable in a repeated 
sequence32. In Bengalese finches, the same pattern was described for 
some cells as well as ramping syllable-locked spike bursts that increased 
or decreased in spike number over the course of a phrase18. In our data 
set, a small subset of ROIs was consistent with fixed syllable-locked 

neural activity (Fig. 2c, Extended Data Fig. 7a, c). More commonly, the 
activity was restricted to a brief period of time within a phrase, as in 
Fig. 2d, not time-locked to each syllable within the phrase. When we 
examined all sequence-correlated ROIs, we found that 91% were active 
for time-intervals shorter than the phrase, with peak timing and onset 
timing that can be found at all times in the phrase (Fig. 3, Extended Data 
Fig. 7b, c, e; also showing that some transients could be explained by 
ramping syllable-locked spike bursts). Together, these findings indicate 
that the majority of neurons recorded here contain information about 
timing within a phrase, not just syllable identity.

PNs carry long-range information
Long-range syntax rules imply that a memory of previous elements 
sung influences future syllable choice. The HVC activity described here 
provides a clue for a possible mechanism of this process. For example, 
during a fixed sequence of four phrases, we found ROIs that carried 
forward information about the identity of the first phrase during each 
subsequent phrase (Fig. 4a, b, Extended Data Fig. 8a; one-way ANOVA 
showing significant modulation of neural activity with the identity 
of the past phrase). In this example, the ROIs that reflect long-range 
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Fig. 2 | HVC PN activity reflects long-range phrase sequence information.  
a, Fluorescence (Δf/f0) of multiple ROIs during a singing bout reveals sparse, 
phrase-type-specific activity. Phrase types are colour coded in the audio 
amplitude trace (bottom), and dashed lines mark phrase onsets. 
Context-dependent ROIs show larger phrase-specific signal in one context 
(blue frames) than another (connected red frames). b, Experimental setup. 
Miniature microscopes were used to image GCaMP6f-expressing neurons in 
HVC, transduced via lentivirus injection. c, Most ROIs are phrase-type-specific. 
Neural activity is aligned to the onset of phrases. These phrases have long  
(left) and short (right) syllables and traces are sorted ( y axis) by phrase 
duration. White ticks indicate phrase onsets. Pie chart shows fractions of ROIs 
that are active during just one, two or three phrase types (see Methods).  
d, Phrase-type-specific ROI activity that is strongly related to second upstream 

phrase identity. Neural activity is aligned to the onset of the current phrase. 
Songs are arranged by the ending phrase identity (right, colour patches), then 
by the phrase sequence context (left, colour patches), and then by duration of 
the pink phrase. White ticks indicate phrase onsets. e, Cells reveal more 
information about past events than future events. Three-hundred and seven 
different ROIs had 398 significant correlations with adjacent (first order, two 
left bars) and non-adjacent (second or greater order, two right bars) phrases. 
The correlations are separated by phrases that precede (P) or follow (F) the 
phrase, during which the signal is integrated. Empty bars mark 
transition-locked representations (see Methods, Extended Data Fig. 7d). 
Two-sided binomial z-test to evaluate significant differences (*proportion 
differences 0.2 ± 0.08 and 0.34 ± 0.11, z = 4.82 and 5.31, P = 1.39 × 10−6 and 
1.065 × 10–7 for first and second or greater order, respectively).
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information continue to do so even if the final phrase in the sequence 
is replaced by the end of the song, suggesting that their activity reflects 
prior song context rather than some upcoming future syllable choice 
(Extended Data Fig. 8b; one-way ANOVA, F5,10 = 36.14 and 2.79, P < 5 × 10−6 
and P < 0.08 for ROIs 50 and 36, respectively, when replacing the last 
phrase with the end of song). This example suggests that a chain of 
neurons that reflect hidden states or information about past choices 
could provide the necessary working memory to implement long-range 
transition rules.

HVC neurons active in complex transitions
The phrases in Fig. 4 are phrase types that lead to complex transitions 
or directly follow them (in Fig. 1). If HVC neurons with context-selective 
activity are driving long-range syntax rules, then they should rep-
resent song context information predominately around complex 
behaviour transitions, when such information is needed to bias tran-
sition probabilities. Accordingly, at the population level, we found 
more sequence-correlated ROIs around complex transitions; about 
70% of sequence-correlated ROIs were found during the rare phrase 
types that immediately preceded or followed complex transitions 
(Fig. 4c; 76% (65%) for first (second or greater) order). Both percent-
ages are larger than the 27% (22%) expected from uniform distribution 

of sequence-correlations in all phrases (binomial test, P < 1 × 10−10, 
Extended Data Fig. 8c–f) and persist if we consider ROIs that overlap 
in footprint and sequence correlation across days as the same source 
(Supplementary Note 1). When we separated the influence of past con-
text and future action on the neural activity we found that, in complex 
transitions, ROIs predominately represented the identity of the preced-
ing phrase (Extended Data Fig. 8g, h; multi-way ANOVA and Tukey’s post 
hoc analysis showing that the preceding phrase identity significantly 
affects the neural activity more than twice more often than the follow-
ing phrase identity; binomial z-test rejects the null hypothesis of equal 
groups: Z = 6.45, P < 1 × 10−10). This bias does not occur outside complex 
transitions (Extended Data Fig. 8i; binomial z-test, Z = 1.06, P > 0.1). This 
finding suggests that neural coding for past context is enriched during 
transitions that require this context information.

Ensemble activity predicts complex behaviour
Of the ROIs with first-order and second- or greater-order sequence 
correlations, 19% and 14%, respectively, were active in several preced-
ing phrase contexts, whereas 44% and 48% preferred just one out of 
several past contexts (Extended Data Fig. 9). Neurons that respond in 
multiple contexts can complement each other to provide additional 
information about song history (Figs. 2d, 4 (ROIs 21, 45, 50)). Extended 
Data Figure 10a shows four ROIs that were jointly active during a single 
phrase type. One ROI was active in a single context (ROI 10) and the 
other three were active in multiple contexts. The phrase during which 
these ROIs were recorded precedes a complex transition and, in this 
example, the behaviour alone (prior phrase type) poorly predicts the 
transition outcome (right bar in Extended Data Fig. 10b, 0.08 out of 1, 
bootstrapped normalized mutual information estimate; see Methods). 
However, looking at multiple ROIs together, we found that the network 
holds significantly more information about the past and future phrase 
types (Extended Data Fig. 10b, 0.42, 0.33, bootstrapped z-test rejects 
the null hypothesis of equal means, z = 8.95, P < 1 × 10−15). This increase 
exceeds the most informative individual ROIs (0.33, 0.21, bootstrapped 
z-test rejects the null hypothesis of equal means z = 2.26, P < 0.015 and 
z = 5.7, P < 1 × 10−8, respectively), suggesting synergy of the comple-
menting activity patterns. Furthermore, in this example the network 
holds more information about the past than the future (Extended Data 
Fig. 10b–d, bootstrapped z-test, z = 4.32, P < 1 × 10−5), suggesting that 
information is lost during the complex transition.

Together, these findings demonstrate that neural activity in canary 
HVC carries long-range song context information. These hidden states 
relate primarily (Extended Data Fig. 3) to past or future song and contain 
the information that is needed to drive complex, context-dependent 
phrase transitions.

Discussion
Motor skills with long-range sequence dependencies are common in 
complex behaviours, with speech the richest example. In general, the 
neural mechanisms that underlie long-range motor sequence depend-
encies are unknown. Here we show that context-sensitive activity in 
HVC PNs can support the long-range order in canary song sequences1.  
Specifically, we find PNs the activity of which is contingent on phrases 
up to four steps in the past and PNs that predict phrases two steps into 
the future. Cells with this higher-order behaviour tend to be active dur-
ing complex behavioural transitions—times at which the song behav-
iour requires high-level information about the sequence context. A key 
next step will be to further subdivide the activity reported here, in order 
to determine which PN classes in HVC carry the long-range information.

The HVC activity described here resembles the many-to-one relation 
between neural activity and behaviour states9,23,27,33 proposed in some 
models to relay information across time. In this respect, our findings 
expand on a previous study in Bengalese finches18 that identified HVC 
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Fig. 3 | Sequence-correlated HVC neurons reflect within-phrase timing.  
a, Activity of context-sensitive ROIs ( y axis, bar marks 50 rows) is time-warped 
to fixed phrase edges (x axis, white lines) and averaged across repetitions of 
short-syllable phrases. Traces are ordered by their peak timing to reveal the 
span of the phrase time frame. b, c, Example raw Δf/f0 traces ( y axis, vertical 
bars equal 0.1) of eight ROIs during phrase types that precede (b) or follow (c) 
the complex transition in Fig. 1. Traces are aligned to phrase onsets (green line; 
sonograms show syllables) and panels show ROIs with various onset timing 
across the phrase. Red lines and blue box plots show the median, range, and 
quartiles of the phrase offset timing (top to bottom: n = 70, 23, 55, 39, 40, 38, 50 
and 31 phrases summarized by the box plots). d, Histograms showing the 
distribution of peak timing (left), onset timing (middle) and signal durations 
(right) of the activity in a relative to the phrase edges (dashed lines).
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PNs the activity of which depended not just on the current syllable 
type but also the prior syllable type. This history extended just to the 
most recent syllable transition, over a time frame of roughly 100 ms.

In the canary HVC neurons observed here, the time frame extends 
over multiple phrases and several seconds. This longer time frame 
rules out explanations based on short-term biophysical processes 
such as short-term calcium dynamics, synaptic plasticity34, channel 
dynamics35 supporting auditory integration36, sensory–motor delay, 
and adaptation to auditory inputs27 that could span a smaller 50–250 ms 
time frame. Unlike the syllable-locked neural activity reported in Ben-
galese finches18, the onset of hidden state activity in canaries is not 
restricted to phrase edges. Rather, the activity recorded here suggests 
that parallel chains of sparse neural activity propagate in the song 
system during a given phrase and that distinct populations of neurons 
can sequentially encode the same syllable type—a many-to-one map-
ping of neural sequences onto syllable types that was predicted by a 
prominent statistical model of birdsong9.

There are clues that HVC does not contain all of the information 
required to select a phrase transition—as more neurons correlate to the 
sequence’s past than to its future, it is possible that sequence informa-
tion in HVC is lost, perhaps owing to neuronal noise that adds stochas-
ticity to transitions. The source of residual stochasticity in HVC could 
be intrinsic to the dynamics of HVC, resembling the ‘noise’ terms that 
are commonly added in sequence generating models37–39, or may enter 
downstream, as well-documented noise in the basal ganglia outputs40 
also converges on pre-motor cortical areas downstream of HVC and 
may affect phrase transitions.

The study of neural dynamics during flexible transitions in canaries 
may provide a tractable model for studying stochastic cognitive func-
tions—mechanisms in working memory and sensory–motor integration 
that remain extremely challenging to quantify in most spontaneous 
behaviours in mammals. Finally, we note that recent marked progress in 
speech recognition algorithms has used recurrent neural networks with 
several architectures designed to capture sequence dependencies with 
hidden states. Examples include long short-term memory (LSTM)41, 
hierarchical time scales42, hidden memory relations43, and attention 
networks44. It is possible that machine learning models will help to 

interpret the complex dynamics of the song system and to inform new 
models of many-to-one, history-dependent mappings between brain 
state and behaviour23.
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transitions. a, A sequence of four phrases (left to right, colour coded) is 
preceded by two upstream phrase types (red or cyan). Average maximum 
projection denoised images (see Methods) are calculated in each sequence 
context during each phrase in the sequence and overlaid in complementary 
colours (red, cyan) to reveal context-preferring neurons. Scale bar, 50 µm.  
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Methods

Ethics declaration
All procedures were approved by the Institutional Animal Care and Use 
Committee of Boston University (protocol numbers 14-028 and 14-029).

Birds
Imaging data were collected from n = 3 adult male canaries. Birds were 
individually housed for the entire duration of the experiment and kept 
on a light–dark cycle matching the daylight cycle in Boston (42.3601° N)  
with unlimited access to food and water. The sample sizes in this study 
are similar to sample sizes used in the field. The birds were not used in 
any other experiments. This study did not include experimental groups 
and did not require blinding or randomization.

Surgical procedures
Anaesthesia and analgesia. Before the birds were anaesthetized, they 
were injected with meloxicam (intramuscular, 0.5 mg/kg) and deprived 
of food and water for a minimum of 30 min. Birds were anaesthetized 
with 4% isoflurane and maintained at 1–2% for the course of the sur-
gery. Prior to skin incision, bupivacaine (4 mg/kg in sterile saline) was 
injected subcutaneously (volume 0.1–0.2 ml). Meloxicam was also 
administered for 3 days after surgery.

Stereotactic coordinates. The head was held in a previously described, 
small animal stereotactic instrument45. To increase anatomical accuracy 
and ease of access, we deviated from the published atlas coordinates45 
and adapted the head angle reference to a commonly used forehead 
landmark parallel to the horizontal plane. The outer bone leaflet above 
the prominent λ sinus was removed and the medial (positive = right) and 
anterior (positive) coordinates are measured from that point. The depth 
is measured from the brain’s dura surface. The following coordinates 
were used (multiple values indicate multiple injections): HVC: +65°, 
−2.5 mm ML, 0.12 mm AP, 0.15–0.7 mm D; nucleus RA: +80°, −2.5 mm 
ML, −1.2 mm AP, 1.9–3 mm D; area X: +20°, −1.27, −1.3 mm ML, 5.65, 
5.8 mm AP, 2.65–2.95 mm D. Angles are measured from the horizontal 
plane defined above and increase as the head is rotated downward, 
the mediolateral coordinate (ML) is measured from the midline and 
increases rightward, the anterior–posterior coordinate (AP) is parallel 
to the horizontal plane and measured forward from λ, and the depth 
(D) is measured from the brain’s surface and increases with depth.

HVC demarcation and head anchoring. To target HVC, 50–100 nl of 
the retrograde lipophilic tracer DiI (5 mg/ml solution in dimethylfor-
mamide, DMF) was injected into the left area X. The outer bone leaflet 
was removed above area X using a dental drill. The inner bone leaflet 
was thinned and removed using an ophthalmic scalpel, exposing a hole 
of ~300 μm diameter. The left area X was injected using a Drummond 
Nanoject II (Drummond pipette, 23 nl/s, pulses of 2.3 nl). In the same 
surgery, a head anchoring structure was created by curing dental acrylic 
(Flow-It ALC, Pentron) above the exposed skull and through ~100-μm 
holes in the outer bone leaflet.

Virus injection and lens implants. A lentivirus that was devel-
oped for previous work in zebra finches (containing the vector 
pHAGE-RSV-GCaMP6f; Addgene plasmid 80315) was also used in canar-
ies46. The outer skull leaflet above HVC was removed with a dental drill. 
The inner bone leaflet was thinned and removed with an ophthalmic 
scalpel, exposing an area of the dura about 1.5–2 mm in diameter. The 
DiI demarcation of HVC was used to select an area for imaging. The 
lentivirus was injected in 3 or 4 locations, at least 0.2 mm apart, at a 
range of depths between 0.5 and 0.15 mm. In total 800–1,000 nl was 
injected into the left HVC. After the injection, the dura was removed and 
the parahippocampus segment above the imaging site was removed 
using a dura pick and a custom tissue suction nozzle. A relay GRIN lens 

(Grintech GT-IFRL-100, 0.44 pitch length, 0.47 NA) was immediately 
positioned on top of the exposed HVC and held in place with Kwik-Sil 
(WPI). Dental acrylic (Flow-It, Pentron) was used to attach the lens to 
the head plate and to cover the surgery area. The birds were allowed 
to recover for 1–2 weeks.

Hardware
To image calcium activity in HVC PNs during singing, we used cus-
tom, lightweight (~1.8 g), commutable, 3D-printed, single-photon 
head-mounted fluorescent microscopes that simultaneously record 
audio and video (Fig. 2). These microscopes enabled us to record hun-
dreds of songs per day, and all songs were recorded from birds longi-
tudinally in their home cage, without requiring adjustment or removal 
of the microscope during the imaging period. Birds were imaged for 
less than 30 min total on each imaging day, and LED activation and 
video acquisition were triggered on song using previously described 
methods46.

Microscope design. We used a custom, open-source microscope de-
veloped in the lab46. A blue LED produces excitation light (470-nm peak, 
LUXEON Rebel). A drum lens collects the LED emission, which passes 
through a 4 mm × 4 mm excitation filter, deflects off a dichroic mirror, 
and enters the imaging pathway via a 0.25 pitch gradient refractive 
index (GRIN) objective lens. Fluorescence from the sample returns 
through the objective, the dichroic, an emission filter, and an achro-
matic doublet lens that focuses the image onto an analogue CMOS 
sensor with 640 × 480 pixels mounted on a PCB that also integrates 
a microphone. The frame rate of the camera is 30 Hz, and the field 
of view is approximately 800 μm × 600 μm. The housing is made of 
3D-printed material (Formlabs, black resin). A total of five electrical 
wires run out from the camera: one wire each for camera power, ground, 
audio, NTSC analogue video and LED power. These wires run through 
a custom flex-PCB interconnect (Rigiflex) up to a custom-built active 
commutator. The NTSC video signal and analogue audio are digitized 
through a USB frame-grabber. Custom software written in the Swift 
programming language running on the macOS operating system (ver-
sion 10.10) leverages native AVFoundation frameworks to communicate 
with the USB frame-grabber and capture the synchronized audio–video 
stream. Video and audio are written to disk in MPEG-4 container files 
with video encoded at full resolution using either H.264 or lossless 
MJPEG Open DML codecs and audio encoded using the AAC codec with 
a 48-kHz sampling rate. All schematics and code can be found online 
https://github.com/gardner-lab/FinchScope and https://github.com/
gardner-lab/video-capture.

Microscope positioning and focusing. Animals were anaesthetized 
and head fixed. The miniaturized microscope was held using a manipu-
lator and positioned above the relay lens. The objective distance above 
the relay was set such that blood vessels and GCaMP6f expressing cells 
were in focus. The birds recovered in the recording setup. Within the 
first couple of weeks, the microscopes were refocused to maximize the 
number of observable neurons.

Histological verification of genetic tool properties
DiI was injected into area X as described above. Three days later, ~800 nl 
lentivirus was injected into HVC using the DiI demarcation. In finches, 
this virus infected predominately PNs46. In this project we analysed neu-
rons with sparse activity that do not match the tonic activity of interneu-
rons in HVC. The virus was injected into four sites, at least 0.2 mm apart 
and at two depths (matching the in-vivo imaging experiment’s pro-
cedure above). About four weeks later, the bird was euthanized (by 
intracoelomic injection of 0.2 ml 10% Euthasol; Virbac, ANADA 200-071, 
in saline) and perfused by first running saline and then 4% paraformal-
dehyde via the heart’s left chamber and the contralateral neck vein. The 
brain was extracted and kept overnight in 4% paraformaldehyde at 4 °C.

https://github.com/gardner-lab/FinchScope
https://github.com/gardner-lab/video-capture
https://github.com/gardner-lab/video-capture
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GCaMP6f expression. The fixed tissue was sectioned into 70-μm sag-
ittal slices (Vibratome series 1000), placed on microscope slides, and 
sealed with cover slips and nail polish. Epifluorescence images were 
taken using a Nikon Eclipse Ni-E tabletop microscope (Extended Data 
Fig. 4a).

Expression specificity to excitatory neurons. The fixed tissue was 
immersed in 20% sucrose solution overnight and then 30% sucrose 
solution over the following night, frozen and sectioned into 30-μm 
sagittal slices (Cryostat, Leica CM3050S). Following work in zebra 
finches47, the slices were stained using antibodies against the calcium 
binding interneuron markers calbindin (1:4,000, SWANT), calretinin 
(1:15,000, SWANT), and parvalbumin (1:1,000, SWANT) by overnight 
incubation with the primary antibody at 4 °C and with a secondary an-
tibody (coupled to Alexa Fluor 647) for 2 h at room temperature. Slices 
were mounted on microscope slides and sealed with cover slips and nail 
polish. A confocal microscope (Nikon C2si) was used to image GCaMP6f 
and the interneuron markers in 3-μm-thick sections through the tissue 
(Extended Data Fig. 4b). The images were inspected for co-stained cells 
(for example, see Supplementary Videos 1–7). The results ruled out any 
co-expression of GCaMP and calbindin or calretinin. We found two cells 
that expressed both parvalbumin and GCaMP (Supplementary Video 5 
shows one example; <0.5% of parvalbumin-stained cells, <0.01% of 
GCaMP-expressing cells), possibly replicating a previous observation 
of parvalbumin expression in HVC PNs47.

Data collection
Song screening. Birds were individually housed in soundproof boxes 
and recorded for 3–5 days (Audio-Technica AT831B Lavalier Condens-
er Microphone, M-Audio Octane amplifiers, HDSPe RayDAT sound 
card and VOS Games’ Boom Recorder software on a Mac Pro desktop 
computer). In-house software was used to detect and save only sound 
segments that contained vocalizations. These recordings were used 
to select subjects that were copious singers (≥50 songs per day) and 
produced at least 10 different types of syllable.

Video and audio recording. All data used in this manuscript were 
acquired between late February and early July—a period during which 
canaries perform their mating season songs. To avoid overexposure 
of the fluorescent proteins, data collection was done during the morn-
ing hours (from sunrise until about 10 am) and the daily accumulated 
LED-on time rarely exceeded 30 min. Audio and video data collection 
was triggered by the onset of song as previously described46 with an ad-
ditional threshold on the spectral entropy that improved the detection 
of song periods markedly. Data files from the first couple of weeks, a 
period during which the microscope focusing took place and the birds 
sang very little, were not used. Additionally, data files from (extremely 
rare) days on which video files were corrupted because of tethering 
malfunctions were not used.

Data analysis
Video file preprocessing. Software developed in-house was used to 
load video frames and audio signal to MATLAB (https://github.com/
gardner-lab/FinchScope/tree/master/Analysis%20Pipeline/extract-
media) along with the accompanying timestamps. Video frames were 
interpolated in time and aligned to an average frame rate of 30 Hz. Audio 
samples were aligned and trimmed in sync with the interpolated frame 
timestamps. To remove out-of-focus bulk fluorescence from the 3D 
representation of the video (rows × columns × frames), the background 
was subtracted from each frame by smoothing it with a 145-pixel-wide 
circular Gaussian kernel, resulting in 3D video data, V(x,y,t).

Audio processing. Song syllables were segmented and anno-
tated by a semi-automatic process. First, a set of ~100 songs was 

manually annotated using a GUI developed in-house (https://github.
com/yardencsGitHub/BirdSongBout/tree/master/helpers/GUI). This 
set was chosen to include all potential syllable types as well as cage 
noises. The manually labelled set was then used to train a deep learn-
ing algorithm (‘TweetyNet’) developed in-house (https://github.com/
yardencsGitHub/tweetynet). The trained algorithm annotated the 
rest of the data and its results were manually verified and corrected. 
In both the training phase of TweetyNet and the prediction phase for 
new annotations, data were fed to TweetyNet in segments of 1 s and 
the output of TweetyNet was the most likely label for each 2.7-ms time 
bin in the recording.

Assuring the separation of syllable classes. To make sure that the 
syllable classes were well separated, all the spectrograms of every in-
stance of every syllable, as segmented in the previous section, were 
zero-padded to the same duration, pooled and divided into two equal 
sets. For each pair of syllable types, a support vector machine classi-
fier was trained on half the data (the training set) and its error rate was 
calculated on the other half (the test set). These results are presented, 
for example, in Extended Data Fig. 1b.

Testing for within-class context distinction by syllable acoustics. 
Apart from the clear between-class separation of different syllables for 
syllables that precede complex transitions, we checked the within-class 
distinction between contexts that affect the transition. To do that, we 
used previously published parameters48 and treated each syllable ren-
dition as a point in an eight-dimensional space of normalized acoustic 
features. For a pair of syllable groups (different syllables or the same syl-
lable in different contexts) we calculate the discriminability coefficient:
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Where μA – μB is the L2 distance between the centres of the distributions 
and σ A

2 and σB
2 are the within-group distance variances from the centres. 

Extended Data Figure 3 demonstrates that all within-class d′ values are 
smaller than all between-class d′ values.

Identifying complex transitions. Complex transitions were identified 
by the length of the Markov chain required to describe the outcome 
probabilities. These dependencies were found using a previously 
described algorithm that extracts the probabilistic suffix tree1 (PST) 
for each transition (https://github.com/jmarkow/pst). In brief, the 
tree is a directed graph in which each phrase type is a root node that 
represents the first-order (Markov) transition probabilities to down-
stream phrases, including the end of song. The pie chart in Extended 
Data Fig. 1i (i) shows such probabilities. Upstream nodes represent 
higher-order Markov chains (2nd and 3rd in Extended Data Fig. 1i (ii) 
and (iii), respectively) that are added sequentially if they significantly 
add information about the transition.

ROI selection, Δf/f signal extraction and de-noising. Song-containing 
movies were converted to images by calculating, for each pixel, the 
maximal value across all frames. These ‘maximum projection images’ 
were then similarly used to create a daily maximum projection image 
and also concatenated to create a video. The daily maximum projection 
and song-wise maximum projection videos were used to select regions 
of interest (ROIs), purported single neurons, in which fluorescence 
fluctuated across songs.

ROIs were never smaller than the expected neuron size, did not over-
lap, and were restricted to connected shapes that rarely deviated from 
simple ellipses. Notably, this selection method did not differentiate 
between sources of fixed and fluctuating fluorescence. The footprint 
of each ROI in the video frames was used to extract the time series, 
f t V x y t( ) = ∑ ( , , )x y( , )∈ROI , summing signal from all pixels within that 

https://github.com/gardner-lab/FinchScope/tree/master/Analysis%20Pipeline/extractmedia
https://github.com/gardner-lab/FinchScope/tree/master/Analysis%20Pipeline/extractmedia
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ROI. Then, signals were converted to relative fluorescence changes, 
=
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0

0
 by defining f0 to be the 0.05 quantile.

The denoised fluorescence, (Δf/f0)denoised, was estimated from the 
relative fluorescence change using previously published modelling 
of the calcium concentration dynamics and the added noise process 
caused by the fluorescence measurement49.

Seeking ROIs with sequence correlations. As each ROI was sparsely 
active in very few phrase types, we first sought ROIs that were active 
during a phrase type and then tested whether it showed correlations 
to preceding or following phrase identities. We used the following 
two-step scheme.

Step 1: identify ROIs with phrase-type-active signal. Phrase-type-active 
ROI was defined by requiring signal, s t( ) =

f t
f

Δ ( )

0
 as defined in the previ-

ous section, to be larger and distinct from noise fluctuations (for each 
ROI and repeats of each phrase type, P). The 0.9 quantile, Δff90, was 
taken as a measure of within-phrase peak values to reduce outliers. 
Irrespective of the phrase boundaries, periods of time during which 
an ROI was active were separated from baseline noise fluctuations by 
fitting the signal within an ROI, s(t), with a two-state hidden Markov 
model with Gaussian emission functions. Specifically, at time t the 
observable, s(t), is assumed to follow a Gaussian distribution, ℕ(μt,σt), 
that determines the likelihood p(s(t);μt,σt). The hidden variable, 
Θt = (μt,σt), is defined by the mean (μ = μ1, μ2) and standard deviation 
(σ  =  σ1, σ2) of the Gaussian distributions and follows first-order 
time-independent Markov transition probabilities, R = p(Θt + 1|Θt), a 
2 × 2 matrix of transition probabilities between two states (‘activity’ 
and ‘noise’). To estimate the sequence of states (the hidden process 
Θ), we maximize the log-likelihood: L{s,Θ,R,μ,σ} = ∑tlog p(Θt|Θt − 1) + ∑tlog 
p(s(t)|Θt). In this process, the mean (μ) and standard deviation (σ) of 
the two Gaussian distributions are free parameters.

We define the phrase-type-occupancy, HMMP, as the fraction of 
phrase P repetitions that contained the ‘active’ state. These two activ-
ity measures, Δff90 and HMMP, are used to select ROIs to be investigated 
for sequence correlations. We impose lenient thresholds: Δff90 > 0.1 
(that is, fluorescence fluctuation is larger than a 10% deviation from 
baseline); and HMMP > 0.1 (that is, the phrase type carries neural activ-
ity in 10% of occurrences or more). In our data set, this threshold is 
roughly equivalent to ignoring ROIs that are active only once or twice 
during a recording day.

Step 2: test sequence correlations. First-order relationships between 
the signal integral (summed across time bins in the phrase) and the 
upstream or downstream phrase identities were tested using a one-way 
ANOVA. The entire set of songs for each bird was used to calculate 
the first-order phrase transition probabilities, Pab = P(a → b), for all 
phrases a and b. Second-order relationships were tested between the 
signal integral and the identity of the second upstream (downstream) 
phrase identity for all intermediate phrase types that preceded (fol-
lowed) the phrase-in-focus in at least 10% of the repeats (as indicated 
by the phrase transition matrix). Sequence–signal correlations were 
not investigated if fewer than n = 10 repeats contributed to the test. 
Relations were discarded if the label that led to the significant ANOVA 
contained only one song. Data used for ANOVA tests are represented in 
Extended Data figures by box plots marking the median (centre line); 
upper and lower quartiles (box limits); extreme values (whiskers), and 
outliers (+ markers).

The data were not tested for normality before performing ANOVA 
tests for individual neurons with the following reasoning. Statistics 
textbooks suggest that violating the normality requirement is not 
expected to have a significant effect. For example, Howell50 writes: 
“As we have seen, the analysis of variance is based on the assumptions 
of normality and homogeneity of variance. In practice, however, the 
analysis of variance is a robust statistical procedure, and the assump-
tions frequently can be violated with relatively minor effects. This is 

especially true for the normality assumption. For studies dealing with 
this problem, see Box (1953, 1954a, 1954b))), Boneau (1960), Bradley 
(1964), and Grissom (2000).” In addition, carrying tests for normality 
will create a bias in our analyses. Each neuron that is tested for phrase 
sequence correlation is recorded in a different number of songs. Testing 
for normality will create a bias towards larger numbers of songs and 
against high-order correlations.

Nevertheless, we repeated the analyses in this manuscript with 
non-parametric one-way ANOVA (Kruskal–Wallis). Although ~15% fewer 
neurons passed the more stringent tests, all the results in this article 
remained the same. We include a summary of the non-parametric sta-
tistics as Supplementary Note 2.

Note that, in this procedure, sparsely active ROIs or ROIs that were 
active in rare phrase types were not tested for sequence correlation. In 
the main text we reported that 21.2% of the entire set of ROIs showed 
sequence correlation. This percentage includes ROIs that were not 
tested for sequence correlations. Out of the ROIs that were tested, 
about 30% had significant sequence correlations (23% and 10% showed 
first- and second-order correlations).

Phrase specificity. The fraction of phrase repetitions during which a 
ROI is ‘active’, HMMP, was also used to calculate the phrase specificity 
of an ROI (Fig. 2). For each ROI, the fraction of activity in repetitions of 
each phrase was calculated separately. These measures were normal-
ized and sorted in descending order. Then, the number of phrase types 
that accounted for 90% of the ROI’s activity was calculated.

Transition-locked activity onsets. The hidden Markov modelling of 
neural activity was used to identify signal onsets at transition from the 
‘noise’ to the ‘active’ states (Fig. 2e, Extended Data Fig. 7d). The phrase 
transition segment is defined as the time window between the onset of 
the last syllable in one phrase and the offset of the first syllable in the 
next phrase. ROIs for which the sequence-correlated activity initiated 
during the phrase transition in the majority of cases were suspected as 
transition-locked representations. These activity rasters were manually 
examined and a small number of representations (nine) were excluded 
from population-level statistics because they appeared reliably and ex-
clusively in specific transitions. Signals that occur exclusively in specific 
transitions are trivially sequence correlated but simply reflect the ongo-
ing behaviour. This exclusion does not change the results in this paper.

Controlling for phrase durations and time-in-song confounds. In 
songs that contain a fixed phrase sequence, as in Fig. 2d, we calculated 
the significance of the relation between s = ∑t∈P(Δf/f0)denoised, an integral 
of the signal during one phrase in the sequence, the target phrase P, and 
the identity of an upstream (or downstream) phrase that changes from 
song to song using a one-way ANOVA. This relation can be carried by 
several confounding variables: the duration of the target phrase; the 
relative timing of intermediate phrase edges, between the changing 
phrase and the target phrase; and the absolute time-in-song of the 
target phrase.

In Extended Data Fig. 6h we account for these variables by first cal-
culating the residuals of a multivariate linear regression (a general 
linear model, or GLM) between those variables and s, and then using a 
one-way ANOVA to test the relation of the residuals and the upstream 
or downstream phrase identity.

Comparing numbers of significant sequence correlations to past 
and future events. In Fig. 2e, we compare the numbers of significant 
sequence correlations between two groups. Group sizes were con-
verted to fractions and the binomial comparison z-statistic was used 
to compare those fractions. Generally, the statistic z =

p p
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In this comparison there is no bias from the conditions of the sta-
tistical test (one-way ANOVA) used to establish sequence correlations 
of individual ROIs. The process of seeking ROIs with sequence cor-
relations (described above) guarantees that tests were not carried in 
under-sampled conditions because the minimal number of repetitions 
always exceeded the number of song contexts. In these conditions the 
ANOVA test is not biased by the number of song contexts, or branching 
order, in different transitions because the test’s significance threshold 
depends on the number of statistical degrees of freedom that account 
for the number of contexts. This dependence guarantees that tests with 
more (or fewer) song contexts are not more likely to reach statistical 
significance by chance.

Contrasting the strength of sequence correlation to past and future 
events. For one-way ANOVA tests, we estimated the significance of 
the difference in η2-statistics (fraction explained variance) calculated 
in past versus future correlations using the following bootstrapping 
procedure. First, we pooled all η2-statistics together. Then we randomly 
split the pool into ‘past’ and ‘future’ groups of the same size as the data 
in Fig. 2e and calculated the mean value in each group. We repeated 
this process 1,000,000 times and used this bootstrapped distribution 
to calculate a P value for the original difference between means. This 
process was carried out separately for first-order sequence correla-
tions and for second-order or greater sequence correlations (Extended 
Data Fig. 6i).

Peak location, onset location, and relative duration of sequence 
correlated activity. The data in Fig. 3a were used to create the following 
three distributions (Fig. 3d). 1, Relative peak timing: the trial-averaged 
signals (rows in Fig. 3a differ in ROIs and phrase type) were calculated 
after time-warping the signals to a fixed phrase duration, Tphrase = 1, the 
onset of which is set to Tonset = 0. The timing of the signal peak, tpeak, is 
therefore already normalized because tpeak = (tpeak − Tonset)/Tphrase.

2, Relative onset timing: the signal in each trial that contributed to 
Fig. 3a was fitted with a hidden Markov model (as explained in ‘Seeking 
ROIs with sequence correlations’). The onset time point of the signal 
state, tonset, was normalized with respect to the phrase onset time, Tonset, 
and the phrase duration, Tphrase:

t
t T

T
ˆ =

−
.onset

onset onset

phrase

3, Relative signal duration: a threshold at 0.5 was used to identify 
segments of reliable state occupancy within the traces in Extended 
Data Fig. 7d. The resulting signal segments are in time-normalized 
coordinates and represent the duration relative to the phrase duration.

Simulating point neuron fluorescence response to spike trains. To 
simulate the expected calcium indicator signal in response to a spike 
train, sp(t) (Extended Data Fig. 7a), we used the empirical single-spike 
response:
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K t
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( ) =
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1 − e
0 ≤ ≤ 0.045s

e > 0.045s

t
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− /0.045

−1

−( −0.045)/0.142

Corresponding to a rise time constant of 45 ms and a decay time con-
stant of 142 ms (see supplementary table 3 in ref. 25). The above kernel 
is a low boundary on the rise time because it assumes 45 ms for the 
full signal rise time and not just half-way. This is done to give a limit 
on what can be resolved.

For a point neuron, we do not assume other dynamical processes 
that stem from morphology. The simulated signal is the convolution 
of the spike train with the kernel, K:

∫F t sp τ K t τ τ( ) = ( ) ( − )d
t

−∞

Contrasting influence of preceding and following phrases on neural 
activity. For neurons with significant sequence correlations (one-way 
ANOVA, described above), we adopted a method agnostic to correlation 
order (first or higher, as defined above) and direction (past or future) 
(Extended Data Fig. 8g–i). We used a multi-way ANOVA to test the ef-
fect of the identity of the immediately preceding and immediately 
following phrase types on the neural signal (s = ∑t∈P(Δf/f0)denoised). Using 
Tukey’s post hoc comparison and a threshold at P = 0.05, we compared 
the fractions of sequence-correlated ROIs influenced by past phrases, 
future phrases, or both. This comparison was also carried out separately 
for ROIs that were active in complex transitions or outside complex 
transitions (Extended Data Fig. 8h, i).

Testing whether sequence-correlated neurons prefer one or more 
song contexts. For neurons with significant sequence correlations 
(one-way ANOVA, described above), we used Tukey’s post hoc analysis 
to determine whether this sequence correlation resulted from a signifi-
cant single preferred context or significant several preferred contexts 
(Extended Data Fig. 9). A neuron was declared ‘single-context prefer-
ring’ if the mean signal in only that context was larger than all others 
(Tukey’s P < 0.001). A neuron was declared as having preference to more 
than a single past context if the mean signal following several contexts 
was larger than another context (Tukey’s P < 0.001). As the post hoc test 
uses a subset of the songs, it is weaker than the one-way ANOVA, and 
some neurons do not show a clear preference to one context or more 
but still have sequence correlation (grey in Extended Data Fig. 9f).

Maximum fluorescence images for comparing context-dependent 
signals. For songs that contain a fixed phrase sequence and a variable 
context element, such as a preceding phrase identity, maximum projec-
tion images were created, as above, but using only video frames from 
the target phrase (for example, the pink phrase in Fig. 2d). Then, the 
sets of maximum projection images in each context (for example, iden-
tity of upstream phrase) were averaged, assigned orthogonal colour 
maps (for example, red and cyan in Extended Data Fig. 5) and overlaid. 
Consequentially, regions of the imaging plane that have no sequence 
preference would be closer to grey scale, whereas ROIs with sequence 
preference would be coloured. In Extended Data Figs. 5, 9, we used a 
sigmoidal transform of the colour saturation to amplify the contrast 
between colour and grey scale without changing the sequence prefer-
ence information. Additionally, to show that pixels in the ROI are biased 
towards the same context preference, the above context-averaged 
maximum projection images were subtracted and pseudo-coloured 
(insets in Extended Data Fig. 5).

Denoised maximum projection images for comparing context- 
dependent signals. The maximum projection images described above 
show the fluorescence signal, including background levels that are typi-
cal to single-photon microscopy. To emphasize context-dependent 
ROIs, we denoised the fluorescence videos using the previously pub-
lished algorithm CNMFE49, and created maximum projection images, 
as above, from the background-subtracted videos (Fig. 4a). The preced-
ing context-preferring ROIs from this estimation algorithm (Fig. 4a) 
completely overlapped with the manually defined ROIs that were used 
to extract signal rasters (Fig. 4b). Extended Data Figure 8j replicates 
Fig. 4a without the de-noising algorithm and shows that the same ROIs 
report the same context dependence. Supplementary Video 8 shows all 
the denoised video data that were used to create Fig. 4a.



Label prediction from clustered network states
The signal integral during a target phrase (pink in Extended Data 
Fig. 10a) was used to create network states—vectors, composed of 
signals from four jointly recorded ROIs. The averages of the vectors, 
belonging to the contexts defined by the first upstream (or down-
stream) phrase label define label-centroids. Then, labels of individual 
songs were assigned to the nearest neighbouring centroid (Euclidean).

Bootstrapping mutual information in limited song numbers
The neurons in Extended Data Fig. 10a were recorded during 54 songs. 
This repetition number is too small for estimating the full distribution 
function of behaviour and network activity states. To overcome this 
limitation, the mutual information between the network state and the 
identity of the first upstream (or downstream) phrase was estimated 
in a bootstrapping permutation process as follows.

We sub-sampled three out of four ROIs in each permutation and con-
verted their signal to binary values by thresholding the signal integral. 
Next, we reduced the number of phrase labels by merging. Specifically, 
in Extended Data Fig. 10, the least common label in downstream states 
was randomly merged with one of the other labels. In the upstream 
labels, the least common label was merged after a random division of 
the other four labels, to form two groups of two.

The mutual information measures were then calculated for each of 
the 48 possible state spaces and divided by the entropy of the behav-
iour state, leading to the scatter shown in Extended Data Fig. 10b. The 
margin of error was estimated from the standard deviation. The 0.95 
quantile level of the null hypothesis was created by randomly shuffling 
each variable to create 1,000 surrogate datasets and repeating the 
measures. The shuffled set was used to create a sample distribution 
and to calculate the significance of the differences in Extended Data 
Fig. 10b using a z-test with the sample mean and standard deviation.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.
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Extended Data Fig. 1 | Canary song annotation and sequence statistics.  
a, Architecture of syllable segmentation and annotation machine learning 
algorithm. (i) A spectrogram is fed into the algorithm as a 2D matrix in 
segments of 1 s. (ii) Convolutional and max-pooling layers learn local spectral 
and temporal filters. (iii) Bidirectional recurrent LSTM layer learns temporal 
sequencing features. (iv) Projection onto syllable classes assigns a probability 
for each 2.7-ms time bin and syllable. b, After manual proofreading 
(see Methods), a support vector machine classifier was used to assess the 
pairwise confusion between all syllable classes of bird 1 (see Methods). The test 
set confusion matrix (right) and its histogram (left) show that in rare cases the 
error exceeded 1% and at most reached 6%. As the higher values occurred only 
in phrases with 10 s of syllables, this metric guarantees that most of the 
syllables in every phrase cannot be confused as belonging to another syllable 
class. Accordingly, the possibility of making a mistake in identifying a phrase 
type is negligible. c, Number of phrases per song for the three birds used in this 
study. d, Song durations for the three birds. e, Mean syllable durations for 85 
syllable classes from three birds. Red arrow marks the duration below which all 
trill types have more than ten repetitions on average. f, Relation between 
phrase class mean duration (x axis) and standard deviation ( y axis). Syllable 

classes (dots) of three birds are coloured according to bird number. Dashed line 
marks 450 ms (upper limit for the decay time constant of GCaMP6f). g, Range of 
mean number of syllables per phrase ( y axis) for all syllable types with mean 
duration shorter than the x-axis value. Red line is the median, light grey marks 
the 25% and 75% quantiles and dark grey marks the 5% and 95% quantiles (blue 
line marks the number of syllable types contributing to these statistics). The 
red arrow matches the arrow in e. h, Cumulative histogram of trill phrase 
durations. i, All complex phrase transitions with second-order or higher 
dependence on song history context (for birds 1 and 2). For each phrase type 
that precedes a complex transition, the context dependence is visualized by a 
PST (see Methods). Transition outcome probabilities are marked by pie charts 
at the centre of each node. The song context (phrase sequence) that leads to 
the transition is marked by concentric circles, the innermost being the phrase 
type that preceded the transition. Nodes are connected to indicate the 
sequences in which they are added in the search for longer Markov chains that 
describe context dependence (for example, i–iii for first- to third-order Markov 
chains). Grey arrows indicate additional incoming links that are omitted for 
simplicity.



Extended Data Fig. 2 | Examples of canary song phrase sequences, rare 
inter-phrase gaps, and aberrant syllables. a, Additional spectrograms of 
phrase sequences (colours above the spectrograms indicate phrase identity) 
that lead to a repeating pair of phrases (pink and yellow). b, Examples of flexible 
phrase sequencing comprising pitch changes (from bird 3). c, Examples of 
phrase transitions with a pitch change from bird 2. d–f, Phrase sequences 
showing changes in spectral and temporal parameters. d, Bird 1 changes from 

up sweep (purple) to down sweep (dark red) through intermediate phrases of 
intermediate acoustic structure. e, Bird 1 shows a change in inter-syllable gaps. 
f, Bird 2 shows changes in pitch sweep rate. g, Top and bottom sonograms 
compare the same phrase transitions where the inter-phrase gap varies.  
h, i, The top sonogram includes a rare vocalization at the beginning of the 
second phrase (highlighted) that, in i, resembles the onset of an orange phrase 
type.
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Extended Data Fig. 3 | An example in which the context-dependence of 
syllable acoustics before complex transitions is too small for clear 
distinction. a, Same as Fig. 1b. A summary of all phrase sequences that contain 
a common transition reveals that the choice of what to sing after the pink 
phrase depends on the phrases that were produced earlier. Lines represent 
phrase identity and duration. Song sequences are stacked (vertical axis) sorted 
by the identity of the first phrase, the identity of the last phrase, and then the 
duration of the centre phrases. b, The discriminability (d′, x axis) measures the 
acoustic distance between pairs of syllable classes in units of the within-class 
standard deviation (see Methods). Bars show the histogram across all pairs of 
syllables identified by human observers (see Methods), corresponding to 

about 99% or more identification success (Extended Data Fig. 1b). The pink 
ticks mark the d′ values for six within-class comparison of the main four 
contexts in a. The orange tick marks the d′ for another context comparison in a 
different syllable that precedes a complex transition for this bird. c, The 
pairwise comparison of distributions matching the pink ticks in b. Each inset 
shows overlays of two distributions marked by contours at the 0.1 and 0.5 
values of the peak and coloured according to context in a. The distributions are 
projected onto the two leading principle components of the acoustic features 
(see Methods, in the space defined by eight acoustic features48). While some of 
these distributions are statistically distinct, they allow for only about 70% 
context identification success in the most distinct case.



Extended Data Fig. 4 | Calcium indicator is expressed exclusively in HVC 
excitatory neurons and imaged in annotated ROIs. a, Sagittal slice of HVC 
showing GCaMP-expressing PNs (experiment repeated in five birds with similar 
results). b, We observed no overlap between transduced GCaMP6f-expressing 
neurons and neurons stained for the inhibitory neurons markers calretinin 
(CR), calbindin, and parvalbumin (calretinin stain shown, staining experiment 

repeated six times for each marker with similar results). c–e, Examples of daily 
ROI annotation in three birds (1–3). Coloured circles mark different ROIs, 
manually annotated on maximum fluorescence projection images on an 
exemplary day (see Methods). f, Maximum fluorescence images (from bird 1; 
see Methods) revealing fluorescence sources, including sparsely active cells, in 
the imaging window across multiple days.
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Extended Data Fig. 5 | Syllable and phrase-sequence-correlated ROIs from 
three birds. a, Sonograms above rasters from four ROIs from three birds. 
White ticks indicate phrase onsets. The fluorescent calcium indicator is able to 
resolve individual long syllables. b, Top, average maximum fluorescence 
images during the pink phrase in Fig. 2d (compare the two most common 
contexts in orthogonal colours (red and cyan)). Scale bar, is 50 μm. Bottom, 
difference of the overlaid images. ROI outlined in green. c, (i) One-way ANOVA 
(F, P, η2 and its 95% CI) tests the effect of contexts (x axis, second preceding 
phrase type in n = 41 sequences) on the signal ( y axis) during the target phrase 
(marked by star) in Fig. 2d. Lines, boxes, whiskers, and plus symbols show the 
median, first and third quartiles, full range, and outliers. (ii–iv) ANOVA tests 
carried out using the residuals from the signal after removing the cumulative 
linear dependence on the duration of the target phrase, the relative timing of 
onset and offset edges of two fixed phrases, and the absolute onset time of the 

target phrase in each rendition. Colours correspond to phrases in Fig. 2d.  
d, Fractions of daily annotated ROIs showing sequence correlation in all three 
birds. Each ROI can be counted only once per order. This estimate includes 
sparsely active ROIs. e–j, Activity during a target phrase (marked by Σ) is 
strongly related to non-adjacent phrase identities (empty lozenges in 
colour-coded phrase sequence). Songs are arranged by the phrase sequence 
context (left or right colour patches for past and future phrase types, 
respectively). White ticks indicate phrase onsets. Box plots and contrast 
images as defined in b, c. n = 31, 16, 23, 23, 16 and 30 songs contribute to e–j, 
respectively. e, f, Similar to main Fig. 2d, (Δf/f0)denoised from ROIs with 
second-order upstream sequence (colour coded) from two more birds.  
g, Third-order upstream relation. h, i, Second-order downstream relations.  
j, First-order downstream relation from another bird.



Extended Data Fig. 6 | Durations and onset times of phrases also correlate 
with their sequence, but cannot fully account for HVC activity.  
a, (Δf/f0)denoised signal traces (ROI 18, bird 3) during one phrase type (red) 
arranged by phrase duration. Coloured barcode annotates the final phrase in 
the sequence. b, The signal correlates to the red phrase’s duration (r (95% CI),  
P: Two-sided Pearson’s test for n = 32 songs). Colours match barcode in a.  
c, Sonograms of two phrase sequences. d–g, ROI signals during n = 36 
sequences containing the last two phrases in c have various relations to the 
duration of the middle (purple) phrase (middle; scatter plots as in b, dashed 
lines indicate significant correlations) and the identity of the first phrase 
(right; colours, one-way ANOVA (F, P, η2 (95% CI)) tests the effect on the signal Σ. 
Whiskers, boxes, and lines show full range, first and third quartiles, and 
medians, respectively). d, Signal correlation with phrase duration is 
completely entangled with the signal’s sequence preference and does not 
apply in separate preceding contexts (red, P > 0.5). e, Signal correlation with 
phrase duration is influenced by the signal’s sequence preference but also 
exists in the preferred sequence context separately (red). f, Signal duration 

correlation is observed within each single preceding context separately, but 
the correlation reduces across all songs. g, Similar to a, but the signal is in the 
second phrase, not the third. h, Distributions of one-way ANOVA P values 
( y axis; whiskers, boxes, and red lines show full range, first and third quartiles, 
and medians, respectively) relating phrase identity and signal for adjacent 
phrases (n = 279 independent first-order tests, left) and non-adjacent phrases 
(n = 119 independent second- or higher-order tests, right). Tests were also done 
on residuals of signals, after discounting the following variables: variance 
explained by the target phrase duration, the timing of all phrase edges in the 
test sequence, and the time-in-song (x axis, effects accumulated left to right by 
multivariate linear regression; see Methods). Coloured dashed lines mark 
P = 0.05 and 0.1. i, Effect size (η2 denotes fraction of variance accounted for by 
the signals’ context dependence) of past (red) and future (blue) one-way 
ANOVA tests for first-order (left, N = 279 tests) and second- or higher-order 
(right, n = 119) correlations. The difference in the mean value (μ) is tested using 
one-sided bootstrap shuffles (P values, see Methods).
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Extended Data Fig. 7 | Signal shape and onset time of sequence-correlated 
HVC neuron activity reflect within-phrase timing. a, Simulation of calcium 
indicator (GCaMP6f) fluorescence corresponding to syllable-locked spike 
bursts in HVC PNs. Syllable-locked spike bursts are convolved with the 
indicator’s kernel (see Methods) to estimate the expected signal when the 
number of spikes per burst is constant (left), ramps up (middle), or ramps down 
(right) linearly with the syllable number. The simulation assumes one burst per 
syllable in time spacing (x axis) that matches long canary syllables (400–
500ms), medium-length syllables (100 ms) and short syllables (50 ms).  
b, Complementing Fig. 3a, average context-sensitive activity in phrases with 
long syllables reveals syllable-locked peaks aligned to phrase onsets (left) or 
offsets (right, same row order as left) that change in magnitude across the 
phrase. c, Signal shape and onset timing have properties of within-phrase 
timing codes. Example raw Δf/f0 signals ( y axis, 0.1 marked by vertical bar) of 

four ROIs aligned to the onset of specific phrase types (green line). Sonograms 
show the repeating syllables. Red lines and blue box plots show the median, 
range, and quartiles of the phrase offset timing. The signal shapes resemble the 
expected fluorescence of the calcium indicator elicited by syllable-locked 
ramping (sketches, top three) or constant activity (bottom). d, Left, barcodes 
show the fraction of signal onsets found in the preceding transition, within the 
phrase, and in the following transition (T→P→T, see Methods). Rows correspond 
to the phrases in Fig. 3a. Right, rows show the average signal state occupancy 
estimated from HMMs fitted to the single-trial data used for Fig. 3a. The 
resulting traces are time-warped to fixed phrase edges (white lines).  
e, Single-trial data from Fig. 3a aligned to phrase onsets (left) and offsets (right) 
and averaged in real time. The resulting traces are ordered by peak location 
(separately in left and right rasters).



Extended Data Fig. 8 | Context-sensitive signals aggregate in complex 
transitions and preferentially encode past transitions. a, Distribution of 
signal integrals ( y axis; whiskers show full range, boxes show first and third 
quartiles, and lines show medians) for ROIs in Fig. 4a. Text label is colour coded 
by phrase type in i–iv. F numbers, P values, and η2 (95% CI) for one-way ANOVA 
relating history (x axis) and signal ( y axis) in n = 15 song sequences. b, ROIs in a 
retain their song-context bias for songs that terminate at end of the third 
phrase rather than continuing. Box plots repeat the ANOVA tests in a for n = 16 
songs in which the last phrase is replaced by the end of the song. c–f, Dark grey 
slices indicate the fraction of correlations that occur in complex behavioural 
transitions. c, d, Data from Fig. 4c separated into the two birds. e, f, The fraction 
in c, d expected by the null hypothesis of correlations distributing by the 
frequency of each phrase type among Nphrases phrases in the dataset. g, In 
sequence-correlated ROIs, multi-way ANOVA is used to separate the effects of 
the preceding and following phrase types on the signal (see Methods). Pie chart 
shows the percentage of sequence-correlated ROIs that were significantly 
influenced by the past, future, or both phrase identities among n = 336 

significant ANOVA tests. h, Restricting analysis to complex transitions, more 
ROIs correlated with the preceding phrase type (blue) than with the following 
one (red). This is true in both naive signal values (left, n = 185 tests) and after we 
removed dependencies on phrase durations and time-in-song (right, n = 185). 
One-sided binomial z-test: *proportion difference 0.33 ± 0.09, Z = 6.45, 
P = 5.5 × 10−11; ‡proportion difference 0.19 ± 0.09, Z = 4.05, P = 2 × 10−5.  
i, Restricting the analysis to phrase types that are not in complex transitions 
(n = 136 ANOVA tests) reveals more ROIs correlated with the future phrase type, 
but the difference is not significant (left, right, n.a.: one-sided binomial z-test, 
P = 0.14, 0.11). j, Fig. 4a showed maximum projection images, calculated with 
denoised videos (see Methods). The algorithm CNMF-E49 involves estimating 
the source ROI shapes, de-convolving spike times and estimating the 
background noise. Here, recreating the maximum projection images with the 
original fluorescence videos shows the background as well, but the 
preceding-context-sensitive neurons remain the same. Namely, the same ROI 
footprints annotated in i–iv show the colour bias (cyan or red) that indicates 
coding of the past phrase with the same colour.
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Extended Data Fig. 9 | ROIs that reflect several preceding song contexts.  
a, b, ROIs that are active in multiple preceding contexts. (Δf/f0)denoised traces are 
aligned to a specific phrase onset, arranged by identity of the preceding phrase 
(colour barcode). White ticks indicate phrase onsets. Box plot shows 
distributions of (Δf/f0)denoised integrals ( y axis, summation in the phrase marked 
by star) for various song contexts (x axis). F number, P value, and effect size  
(η2 (95% CI)) show the significance of separation by song context (one-way 
ANOVA). Asterisks mark contexts that lead to larger mean activity compared  
to another context (Tukey’s multiple comparisons; n = 41 songs and 
P = 0.01,7.5 × 10−6, 5.6 × 10−5 in a; n = 19, P = 8.8 × 10−7, 8.15 × 10−8 in b). Average 
maximum projection images (see Methods) during the aligned phrase compare 

the song contexts that lead to significantly higher activity with the other 
contexts in orthogonal colours (cyan and red for high and low activity, 
respectively). Scale bar, 50 μm. c–e, Neurons with similar context preference to 
those in a and b on adjacent days. Tukey’s multiple comparisons: n = 44, 
P = 0.001, 4.08 × 10−6, 1.3 × 10−6 in c; n = 45, P = 0.0016, 2.85 × 10−6 in d; n = 30, 
P = 0.0002, 0.0001 in e. f, Fraction of ROIs with selectivity for one context 
(purple) or multiple contexts (red) identified using Tukey’s post hoc multiple 
comparisons (see Methods). Grey slices (n.a.) mark context-sensitive ROIs for 
which the post hoc analysis did not isolate a specific context with a larger mean 
signal. Top (bottom) pie shows selectivity for first (second) preceding phrases.



Extended Data Fig. 10 | HVC neurons can be tuned to complementary 
preceding contexts. a, Four jointly recorded ROIs exhibit complementary 
context selectivity. Colour bars indicate phrase identities preceding and 
following a fixed phrase (pink). For each ROI (rasters), (Δf/f0)denoised traces are 
aligned to the onset of the pink phrase (x axis) arranged by the identity of the 
preceding phrase, by the identity of the following phrase, and finally by the 
duration of the pink phrase. b, For the example in a, normalized mutual 
information between the identity of past (P) and future (F) phrase types is 
significantly smaller than the information held by the network states about the 
past and future contexts (left bars; N is the activity of the four ROIs). Dots, bars, 

and red lines mark bootstrap assessment shuffles, their means, and the 95% 
level of the mean in shuffled data (see Methods). *Difference is 0.09 ± 0.03, 
Z = 4.3, P = 7.3 × 10−6; **difference is 0.26 ± 0.02, Z = 8.9, P < 1 × 10−15, 
bootstrapped one-sided z-test. c, Signal integrals from the four ROIs in a are 
plotted for each song (dots, n = 54 songs) on the three most informative 
principle components. Dots are coloured by the identity of the preceding 
phrase. Clustering accuracy measures the ‘leave-one-out’ label prediction for 
each preceding phrase (true positive), calculated by assigning each dot to the 
nearest centroid (L2). Dashed line marks chance level. d, As in c but for the first 
following phrase.
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